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A method for economically obtaining accurate results for the transition from ambi- 
polar to free diffusion in an isothermal afterglow is presented. The techniques employ 
variable spatial zoning for sheath resolution and utilize the Gear package for inte- 
grating the stiff system of equations in time. Results are presented which indicate that 
significant errors can be made by improper sheath resolution. The results also show 
that in contrast to earlier work, the computational times required are insensitive to the 
ratio of ion to electron diffusion coefficients. 

I. INTRODUCTION 

This work reports a method which has been developed to study diffusion 
processes in decaying plasmas, with particular application to investigating the 
transition from electron-ion ambipolar diffusion to free diffusion of the separate 
species. This paper is restricted to the study of the isothermal afterglow confined 
by a cylindrical chamber, although the techniques are applicable to active plasmas 
and plasmas with multiple ion species. The earliest work on this topic was reported 
by Allis and Rose [l], who studied the problem in the context of a steady electron 
loss rate. The full time dependent problem was first examined by Kregel [2], who 
compared the time decay of the average electron density with the experiments 
in helium of Freiberg and Weaver [3]. Gusinow and Gerber [4] reported calcu- 
lations which specifically compared the steady-state results of Allis and Rose with 
the full time dependent solutions for both the electrons and ions. Recent experi- 
mental comparisons with the calculations of Kregel have been reported by Gerber 
and Gerard0 [5]. 

The numerical solution for the time dependent problem is greatly complicated 
by the stiff character of the model equations. The electron and ion diffusion 
coefficients in helium differ by more than a factor of five hundred, and the initial 
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characteristic frequency of the self-consistent electric field at high initial densities 
exceeds the ambipolar rate by about eight orders of magnitude. Systems of 
equations with decaying solutions having greatly differing time constants are usually 
referred to as “stiff.” The spatial dependence of the variables also contributes to the 
difficulties, in that a sheath forms at the wall which at high densities has a thickness 
of only a few percent of the chamber radius. Since the resolution of this sheath is 
crucial to the correct computation of the start of the transition regime, it is clear 
that serious spatial zoning problems exist. 

The method of solution reported in this work employs the stiff system solver 
developed by Gear [6, 71. This technique permits stable, accurate solutions to be 
obtained using time steps greatly exceeding those derived for explicit methods. 
The application of the Gear solver to ordinary differential equations derived from 
partial differential equations will be discussed. The spatial resolution difficulties 
were overcome by using a variable zoning density, similar to that reported by 
Rivas [S]. This type of zoning provides an excellent resolution of the sheath, 
while still allowing a reasonable zoning of the central region. Results are presented 
which indicate that the twenty mesh calculation of Kregel leads to an artificially 
slow electron diffusion rate and to erroneous values for the electric field near the 
wall. This is a manifestation of an inadequate resolution of the Debye sheath. 
Comparisions are also made with the computational times reported by Gusinow 
and Gerber which indicate the rather dramatic reduction in running time available 
by using the Gear package in conjunction with variable zoning. 

II. BASIC EQUATIONS 

We consider an isothermal afterglow confined by an infinitely long cylindrical 
discharge chamber. The pressure of the neutral gas is assumed high enough to 
ensure that the mean free-paths are smaller than all relevant dimensions, including 
the Debye sheath at the wall. For the purposes of this work it is also assumed that 
the electron and ion densities are zero on the chamber wall. This assumption is 
consistent with the earlier work [l, 2,4] with which we wish to compare, although 
recent calculations [9] consider more realistic conditions for the electron density. 
Under these assumptions, the equations describing the system are 
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where p and n are the ion and electron densities in particles/m3, E is the magnitude 
of the space charge electric field in volts/m, p and D are the mobilities and diffusion 
coefficients for the relevant species, e is the electronic charge, and Ed is the free 
space permittitivity. Equations (1) and (2) are the species continuity equations and 
Eq. (3) is the Poisson equation. 

The boundary conditions at the chamber wall (I = rb) are that n(re , t) = 
p(rb , t) = 0. At the origin, symmetry considerations imply that 

&(O, t)/Lk = ap(O, t)/i% = E(0, t) = 0. 

The definition of the problem is completed only upon specification of initial 
conditions for n(r, 0) andp(r, 0), typically of the formp(r, 0) = n(r, 0) = n,,J,(r/A), 
where (1 = rJa, and CY~ is the first zero of the zero order Bessel function. It is 
important to use values of rzO sufficiently large to insure that the computations 
begin well in the ambipolar region, so that the somewhat arbitrary initial conditions 
do not affect the transition behavior. 

Equations (l)-(3) can be combined to yield an alternate form for the electric 
field equation, given by 

aE/at = (e/d[D+(W~r) - D-(War> - (P+P + p-n) El, (4) 

which can be used instead of Eq. (3). This alternative is attractive because of its 
similarity in form to Eqs. (1) and (2), allowing the reduction of all three equations 
to a first order system of ordinary differential equations in time. It should be 
pointed out that the use of Eq. (4) requires some care in the spatial zoning to 
obtain numerical results consistent with Eq. 3. The difference form to be described 
satisfied this consistency check to at least seven digits for all cases examined. 

The stiffness of the system can be seen easily by examining some typical numbers 
for a helium afterglow as used by Kregel 121. Diffusion coefficients at a pressure 
of 4.0 torr are given approximately by D, = 9.8 x 1O-3 m2/sec for He,+ and 
D- = 5.14 m2/sec. Since the characteristic free diffusion times for the species are 
given by T = A2/D, we see that electrons tend to diffuse over 500 times faster than 
the ions. Initial densities as high as rzO = 101’ m-3 are indicated by Kregel. An 
approximate time constant for the initial growth of the electric field at this density 
can be obtained by retaining only the largest term on the right hand side of Eq. (4), 
leading to a characteristic time 7E - E,,/ep-n,, N IO-l2 sec. For a wall radius 
rb = 4 x 1O-3 m, the characteristic time for ambipolar diffusion is given by 
TA = A2/2D+ N 1O-4 sec. Transient responses to density perturbations at high 
densities occur on the Q time scale, which is very small compared to 7A . 

The spatial zoning difficulty is evident upon comparing the Debye length, 
A, = (e,,kT/n,e2)1/2 = 3.7 x 1O-6 m, with the chamber radius rb = 4 x 1O-3 m. 
A value of (/C/e = D/p = 0.025) for both species was used for this comparison. 
The actual wall sheath can be as large as ten or twenty Debye lengths, since the 
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density near the wall is much lower than the central density. Nevertheless, these 
considerations preclude the use of standard numerical techniques for obtaining 
accurate results in a reasonable time. 

III. SPATIAL DIFFERENCING 

The right-hand side of Eqs. (l), (2), and (4) will be represented by a finite 
difference form using nonuniform zoning. The zone interfaces will be denoted 
byrj, 1 <jQN,wherer,=Oandr,=r,,. The electric field will be defined 
at the zone interfaces, while the particle densities will be defined at points internal 
to the zones, given by r;, , 1 < j d N. The extra zone point at ?N is used to provide 
a mesh point outside of the chamber wall to satisfy the wall boundary condition, 
i.e., n(F,) = --n(i’,-,), so that n(r,) = 0, since rb = (i;, + F&/2. We adopt the 
specification that the zone interfaces and internal mesh points are related by 

1 -0 ‘N = ‘b 

r. ‘N-1 ‘N 

FIG. 1. Spatial zoning arrangement. The zone boundaries are shown by the solid lines and 
the points where the densities are calculated by the dashed lines. 

r, = (?j-1 + YJ2, 2 < j < N. This configuration is shown in Fig. 1. Using these 
definitions, the spatially differenced form of Eq. (1) can be written as 

aPjlat = B+[(P5+1 - Pj)(l + 0-/2pji)/0+ - (Pi -Pi-N - A+/2rj)/A-l/0*ve 
--I-L+[$~+I(~ + W2Fd &+I - i&i<1 - d+Pfd ~W4we , (5) 

where 
A+ = r;,,, - Fj , 
A-=Fj-Fj-I, 

A ave = (A+ + A-W, 
and $i = (Pr + PCI)/% 
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i.e., k is the density interpolated to the ri mesh interfaces. The simple form for $I 
is a benefit arising from the definition of rj = (Fj...1 + FJ2. The difference equation 
for the electron density can be obtained simply from Eq. (5) by replacing all p’s 
with n’s, replacing D, with D- , and p+ with the negative value of p- . The electric 
field equation is written as 

a&/at = (e/d{[D+(pj - P+1) - D-(nj - nj-J]/d- - @+$j + p-f&) Ej}. (6) 

The truncation error of Eq. (5) can be examined by expanding the variables in 
Taylor series about the point rj . Substitution into Eq. (5) yields 

+ 13 . (D+(d+ - A- + d+d-/21,)/3) 

_ E~=P 
[ ar2 
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+ higher order terms. (7) 

Similarly, Eq. (6) becomes 

%I =~[[D+~-D-~-(P+P+P-W]~~, 
‘I 9 

+ [((D+g - D- $) d-‘/24) - (p, $ + p- g) &8]1r, 

+ higher order terms . 
I (8) 

It is seen from Eq. (8) that our arrangement of zones yields second order accuracy 
for the field equation, even with variable zoning. The truncation terms of Eq. (7) 
remain to first order near the origin even for uniform zoning, since Fi is of order d 
in this region. This restricts our variable zoning arrangements to schemes which 
not only resolve the wall sheath, but also retain good resolution near the origin. 
It is also seen from Eq. (7) that the use of nonuniform zoning adds truncation 
terms proportional to [P+ - d-1. A zoning arrangement designed specifically 
for this type of error has been described by Rivas [8]. It is based on the philosophy 
that the fractional change in adjacent zone widths will be restricted in regions of 
large d, but large fractional changes will be allowed when the zone size is very 
small anyway. The zoning arrangement to be used results in reducing [d+ - d-1 
to second order in the maximum d over the entire domain of the problem. It also 
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provides many zones near the chamber wall without destroying the resolution of 
the central region. The particular form suggested by Rivas, and used in this work, 
defines the interior mesh points rj as 

F, = [l - (1 -.j/N)Z] Th ) 1 <,j<N-1. (9) 

The extra zone outside of the boundary is given by i;, = 2r, - T;N-l , and the zone 
interface locations follow from the earlier definition-of rj = (Fjel + ?,)/2. Near the 
origin, Eq. (9) provides a zone spacing of about 2r,/N, which is only twice as coarse 
as that arising from uniform zoning. Near the wall, the zone width decreases to 
about r,/N2, providing excellent resolution of the wall sheath. 

The computation of variables at the boundaries requires only a slight alteration 
of the basic scheme. The additional mesh point of i;, is loaded with density values 
(-pNPI) and (-n&, so that jN = &,, = 0 at r = rb . The condition that 
i$/Lk = 0 at the origin is satisfied by letting pjP1 = pj in Eq. (5) when j = 1. A 
similar form is used for computing ni for ,j = 1. 

IV. INTEGRATION IN TIME 

The set of simultaneous equations defined by Eq. (5) for p and its analog for n, 
plus Eq. (6) for the electric field, can be considered to be a set of 3N ordinary 
differential equations with time as the independent variable. This system has the 
form 

dWjdt = f (W), (10) 

where the vector W contains the 3N elements arising from defining p, n, and E 
at N mesh points. 

This form is particularly suited for integration using the method of Gear [6, 71. 
This technique was derived specifically for stiff systems, and has been successfully 
incorporated into the present work. The Gear method, using a variable time step 
and a variable order implicit predictorcorrector scheme, incorporates no formal 
time step restriction based on zone size. This capability is crucial in allowing the 
use of fine zoning in the sheath region without the usual time step reduction. 
As a result, the nonuniformly zoned results to be presented were completed with 
almost no running time increase over uniformly zoned cases. 

The Gear package provides for convergence requirements based on either a 
relative or absolute local error estimate. Since accurate computations were required 
even for small ion and electron densities, a relative local error requirement was 
used for all variables. When the central electron density had decreased by seven 
orders of magnitude, the electron density equations were no longer computed, 
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permitting the calculations to continue on the ion free diffusion time scale. Most 
of the runs to be presented used a relative error criterion of lo-*. Cases run with 
an error of 1O-6 showed a negligible difference. 

V. RESULTS 

Before concentrating on actual ambipolar diffusion problems, initial runs were 
made in which the electric field was forced to remain equal to zero for all time. It 
is seen from Eqs. (I) and (2) that the ions and electrons will simply diffuse freely, 
providing a test case having an analytic solution. For initial density distributions 
pd,,(r/A) and n,,J,,(r/A) the time dependent solution is given by 

p(r, t) = p,J,(r/A) e-t’Tp, 

H(Y, t) = n,J,(r/A) e-t’Tn, 

where A = r,,/~l~ , (Ye is the first zero of the Bessel function, and rP = AZ/D+ , 
7 - Lt2/D-. n- 

Runs were made with both uniform zoning and the variable zoning of Eq. (9) 
to check for differences in the accumulated error. The first run used twenty uni- 
formly spaced zones to compute the free diffusion for a time equal to 167,) 
corresponding to a reduction of the central ion density by seven orders of magnitude. 
The central density at this time differed from the analytic result by only 1.3 %, 
indicating no significant error accumulation. The same case was run for twenty 
zones arranged nonuniformly using the scheme of Eq. (9). The error at t = 167, 
was 1.7 %, indicating that the nonuniform zoning provided answers substantially 
as accurate as the uniformly zoned case, at least for this particular test problem. 

Since the work of Kregel [2] presented the first time dependent solutions to this 
set of equations, and since his work has been used in recent experimental com- 
parisons [5], an identical case using twenty uniformly spaced meshes was run. The 
computed results obtained reproduced those of Kregel within the resolution of his 
published data. This correlation permitted further runs to be made in which only the 
zoning of the problem was changed. Figure 2 plots the electron density averaged 
over the cylindrical cross section as a function of time. Only the electron density 
was plotted because of its greater sensitivity to the zoning. Results are shown for 
twenty uniform zones, and for twenty, forty, and eighty meshes arranged according 
to Eq. (9); only points differing significantly from each other are plotted. 

Significant differences between the twenty uniform mesh results and the more 
finely zoned cases begin to occur at average densities of about 101* m-3. The uni- 
formly zoned case leads to an artificially slower electron diffusion during the 
transition, resulting in errors of around an order of magnitude at the lowest 
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FIG. 2. Decay of average electron density as a function of time. 

densities plotted. The twenty mesh variably zoned case leads to a higher electron 
loss rate, but forty zones are required to permit accurate calculations for a density 
reduction of five orders of magnitude. Significant differences between the eighty 
and forty mesh variably zoned cases are seen only for density reductions of greater 
than 105. Typical running times on the CDC-6600 for the twenty, forty, and eighty 
mesh cases were two, ten, and sixty minutes, indicating that the forty mesh case 
provides the best compromise between running time and accuracy. A similar 
plot for the unaveraged central density as a function of time showed a similar 
behavior. 

We next consider possible reasons why the uniformly zoned case leads to a slower 
electron diffusion. Figure 3 plots the electric field magnitude at the outer wall as a 
function of average electron density. Only the more accurately zoned cases lead 
to field values which are only weakly density dependent at high density values, 
in agreement with the asymptotic results of Allis and Rose [l]. The high electric 
field arising in the uniformly zoned case tends to attract electrons toward the 
center, leading to the slower diffusion rate. Other more indirect effects of zoning 
resolution may also alter the diffusion velocities. 

It may be questioned whether an accurate value for the field on the wall is really 
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FIG. 3. Wall electric field as a function of average electron density. 

required, since Eqs. (l), (2), and (4) show that only the product of the density 
(assumed zero at the wall) and the field appears in the equations. Although not 
plotted, sign&ant electric field errors occur just inside the wall. More recent 
work [9] has been aimed at relaxing the zero density condition for the electrons 
at the wall and incorporating a boundary condition on the electron current, as 
suggested by Ingold [lo]. This type of boundary condition depends critically on 
the wall field, since 12 * E becomes nonzero at rb . 

Since the large electric field can lead to a slower electron diffusion, the source of 
the high field must be examined. Figure 4a shows the structure of the wall sheath 
at an average electron density of 10ls m-S for the twenty uniformly spaced mesh 
case. Figure 4b presents the same results for forty variably spaced zones. It can be 
seen that the uniformly zoned case forces a sheath thickness of at least one zone, 
even though the correct sheath thickness may be smaller. This forces the quantity 
(p - n) to be nonzero over an unrealistically large distance, which, as is seen 
from Eq. (3), results in the higher electric field. It is worth noting that for the 
uniformly zoned case, the wall field determined by Eq. (4) is inconsistent by about 
fifty percent with that determined by Eq. (3), again indicating the inadequate 
sheath resolution. The forty mesh case provides consistency to over four digits 
even at these high average densities. 

The work of Gusinow and Gerber [4] clearly indicates the difficulties which the 
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FIG. 4. Radial dependence of sheath structure, for (a) twenty uniformly spaced zoning and 
(b) forty variably spaced zones. Solid curves are used for ion density, dashed curves for electron 
density, and dash-dot curves for electric field. Curves are shown for an average electron density 
of lOla m+. 

standard alternating-direction-implicit methods encounter at high ratios of 
S = D-/D+ . As the electrons are allowed to be more mobile relative to the ions, 
the required time step becomes an increasingly smaller fraction of the charac- 
teristic ion diffusion time. The published results of Ref. [4] state that while six 
minutes of CDC-6600 time were used at S = 32, the running time increased to 
sixty-six minutes at S = 100. 

The method which has been described was used to reproduce the results of [4]. 
It was found that for S = 32, the forty variably spaced zone version produced 
results to the same accuracy as the 300 zone version of [4]. The more complex 
techniques used led to a running time of 4.7 minutes, a rather insignificant improve- 
ment. Repeating the computations for S = 100 required only 5.2 min, an improve- 
ment of over an order of magnitude. A further run at S = 1000 required 6.3 min, 
demonstrating the relative insensitivity of the Gear method to increased stiffness. 
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The success of the present calculations for very stiff problems (S > 500) arises 
from both the variable zoning and the use of the Gear package. It would be 
informative to know the precise contributions of each of these techniques to the 
overall improvement. Roughly 120 uniformly spaced zones would be required to 
obtain the sheath resolution shown in Fig. 4b for forty variably spaced zones. The 
computer time expended would increase from eleven minues to about three hours. 
Variable zoning thus forms a crucial part of the method. Attempts to obtain stable, 
accurate results using standard AD1 techniques for very stiff cases with S > 500, 
even with only forty meshes, have led to hopelessly long running times. The Gear 
package permits the large time steps required for a practical solution. 

VI. SUMMARY 

A method for computing the transition from ambipolar to free diffusion has been 
described. The method uses variably spaced zones to provide good sheath reso- 
lution, and permits the use of large time steps by means of the Gear stiff system 
solver. The results obtained indicate that serious errors arise when an insufIicient 
number of zones are used for the sheath region. Results have been presented which 
demonstrate that the time required for solutions is quite insensitive to the ratio 
S = D-/D+ , in contrast to earlier work. This flexibility will permit the economical 
study of various alternative boundary conditions or physical processes in decaying 
plasma problems. 
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